Full Appendix of Strategic Formation of Airline Alliances

NOT FOR PUBLICATION

This is for referee use and it is available at the authors' web pages

Ricardo Flores-Fillol and Rafael Moner-Colonques
October 2006

A Appendix: Definition of the relevant region R

A number of restrictions on the parameters d, θ and α have to be observed to ensure positive prices, quantities, marginal costs, margins and the compliance with non-arbitrage conditions are guaranteed in the three scenarios under consideration. Markets defined by a triple $\{d, \theta, \alpha\} \in R$ guarantee comparable results.

- Bounds on α. Positivity and non-arbitrage conditions in the three considered scenarios lead to several bounds in α. After comparing all these bounds and selecting the most stringent ones, we obtain $\alpha \in(\underline{\alpha}(d, \theta), \bar{\alpha}(d, \theta))$ with $\bar{\alpha}(d, \theta)=\min (B 1, B 2)$ and $\underline{\alpha}(d, \theta)=\max (B 1, B 3,1)$ where

$$
\begin{aligned}
& B 1 \equiv \frac{4(4-6 \theta+d(2 \theta-3+d(5 \theta-2)))}{d(2 \theta-3)(7 \theta-2)+2\left(2+\theta-6 \theta^{2}\right)+2 d^{2}(2+\theta(10 \theta-9))}, \\
& B 2 \equiv \frac{4 \theta((d-1) d-3)-2\left(d^{2}-5\right)}{\theta(10-12 \theta+(d-4) d(2 \theta-1))} \text { and } B 3 \equiv \frac{4 d(3 \theta-2+d(2 \theta-1))}{4 d(2+d)-10+27 \theta-4 d(7+5 d) \theta+6 \theta^{2}(4 d(1+d)-3)} .{ }^{1}
\end{aligned}
$$

[^0]Specifically, $B 1$ comes from ensuring positive equilibrium travel volume in the interline trip for outsiders in the single alliance situation; $B 2$ from positive marginal cost for partners in the single alliance situation; $B 3$ from the fulfillment of a non-arbitrage condition for partners in the single alliance situation.

Notice that $B 1$ can be either a lower or an upper bound.

- An illustrative representation can be displayed in space (θ, d) - see Figure $A 1$. To this end, we can compute the bounds on θ that come from the difference between $\bar{\alpha}(d, \theta)$ and $\underline{\alpha}(d, \theta)$, that is, the bounds ensuring the existence of a positive α such that we can find markets $\{d, \theta, \alpha\} \in R$. We obtain $\theta \in(0, \bar{\theta}(d))$ with
$\bar{\theta}(d)=\left\{\begin{array}{l}L 1 \text { for } d<\frac{1}{2} \\ L 3 \text { for } d \in\left(\frac{1}{2}, 0.618\right] \\ L 2 \text { for } d>0.618\end{array}\right.$
where $L 1 \equiv \frac{2+3 d+2 d^{2}}{2\left(2+3 d+d^{2}\right)}, L 2 \equiv \frac{2 d(2+d)-5}{2\left(d-3+2 d^{2}\right)}$ and $L 3 \equiv \frac{4+d}{6+4 d}$. The case $d=\frac{1}{2}$ is a particular case: there is a discontinuity and α is bounded below by $B 1=B 3=1$ and above by $B 2=\frac{38-52 \theta}{47 \theta-62 \theta^{2}}>1$.

Figure $A 1$ below represents $L 1, L 2$ and $L 3$. We claim that, for any pair $\{d, \theta\}$ in the region delimited by $L 1, L 2$ and $L 3$, there exist values of $\alpha \in(\underline{\alpha}(d, \theta), \bar{\alpha}(d, \theta))$ such that we can find markets $\{d, \theta, \alpha\} \in R$.

- Insert here Figure $A 1$ -

More precisely,

- For $d<\frac{1}{2}$ and $\theta<L 1$, there exist values of $\alpha \in(B 1, B 2)$ such that we can find markets $\{d, \theta, \alpha\} \in R$.
- For $d \in\left(\frac{1}{2}, 0.618\right]$ and $\theta \in[L 1, L 3)$, there exist values of $\alpha \in(B 3, B 1)$ such that we can find markets $\{d, \theta, \alpha\} \in R$.
$\mathrm{B}\left(p_{p}^{a}>0\right), \mathrm{B}\left(p_{o}^{a}>0\right), \mathrm{B}\left(P_{p}^{a}>0\right), \mathrm{B}\left(2 p_{p}^{a}-P_{p}^{a}>0\right)$ and $\mathrm{B}\left(P_{p}^{a}-p_{p}^{a}>0\right) ;$ Double alliance: $\mathrm{B}\left(q^{a a}>0\right)$ $\mathrm{B}\left(1-\theta\left(q^{a a}+Q^{a a}\right)>0\right)$, and $\mathrm{B}\left(P^{a a}-2+\theta\left(q^{a a}+Q^{a a}\right)>0\right)$. One can observe that $\mathrm{B}\left(p_{p}^{a}-1+\frac{\theta\left(q_{p}^{a}+Q_{p}^{a}\right)}{2}>0\right)$ and $\mathrm{B}\left(p^{a a}-1+\frac{\theta\left(q^{a a}+Q^{a a}\right)}{2}>0\right)$ simply reduce to $\alpha>1$. After comparing all these bounds and selecting the most stringent ones, we are left with $B 1, B 2$ and $B 3$ where $B 1 \equiv \mathrm{~B}\left(Q_{o}^{a}>0\right), B 2 \equiv \mathrm{~B}\left(1-\theta\left(q_{p}^{a}+Q_{p}^{a}\right)>0\right)$ and finally $B 3 \equiv \mathrm{~B}\left(2 p_{p}^{a}-P_{p}^{a}>0\right)$.
- For $d>\frac{1}{2}$ and $\theta<\min (L 1, L 2)$, there exist values of $\alpha \in(B 3, B 2)$ such that we can find markets $\{d, \theta, \alpha\} \in R$.

In addition, we know that $\bar{\theta}<\frac{2}{3}$ from the second order conditions. This means that economies of traffic density cannot be too high. This makes sense because otherwise marginal costs would become negative.

B Appendix: Proofs

Proof of Proposition 1.

The difference $P_{p}^{a}-2 p^{n a}$ yields an expression whose denominator is negative for $\{d, \theta, \alpha\} \in$ R. The numerator is positive for $\alpha>\alpha^{*} \equiv \frac{4(d \theta-1)}{4 d+9 \theta+12 d \theta^{2}-6-14 d \theta-6 \theta^{2}}$. We now compare α^{*} with the corresponding lower bounds in R. Thus, for $d<\frac{1}{2}$, the difference $B 1-\alpha^{*}$ is positive and, for $d>\frac{1}{2}$, the difference $B 3-\alpha^{*}$ is positive too. Therefore, $\alpha>\alpha^{*}$ is always verified in R. It is straightforward to check that $\alpha>\alpha^{*}$ also implies $Q_{p}^{a}>Q^{n a}, p_{o}^{a}<p^{n a}$, $Q_{o}^{a}<Q^{n a}$ and $q_{o}^{a}>q^{n a}$.

As for the fares and travel volumes for the partners' short markets, the difference $q_{p}^{a}-q^{n a}$ yields an expression whose denominator is negative for $\{d, \theta, \alpha\} \in R$. The sign of the numerator depends on whether market size α is greater or smaller than $\frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$. The function $\phi_{1}(d, \theta)$ is positive for $\theta \in\left(\theta^{-}(d), \theta^{+}(d)\right)$, where $\theta^{+}(d)>\frac{2}{3}$ and $\theta^{-}(d)=$ $\frac{3-11 d-d^{2}+4 d^{3}+\sqrt{9-6 d-5 d^{2}-6 d^{3}+17 d^{4}}}{4 d\left(2 d^{2}-3\right)}$. The function $\phi_{2}(d, \theta)$ is positive for values of θ above $\tilde{\theta}(d)$, which is a decreasing function in d, it is discontinuous at $d=\frac{1}{2}$ and it lies above $\frac{2}{3}$ for $d>\frac{1}{2}$. When $\theta<\tilde{\theta}(d)$ the numerator in $q_{p}^{a}-q^{n a}$ is positive; when $\theta>\tilde{\theta}(d)$ the numerator in $q_{p}^{a}-q^{n a}$ is positive for $\alpha<\frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$. We have the following cases.

- Case $d<\frac{1}{2}$. For every $\{d, \theta, \alpha\} \in R$,
i) for $\theta<\tilde{\theta}(d)$ the numerator in $q_{p}^{a}-q^{n a}$ is positive and therefore $q_{p}^{a}-q^{n a}<0$.
ii) for $\theta>\tilde{\theta}(d), \frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$ is positive and greater than $B 1$. If $\alpha<\frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$ the numerator in $q_{p}^{a}-q^{n a}$ is positive and hence $q_{p}^{a}-q^{n a}<0$; if $\alpha>\frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$, then $q_{p}^{a}-q^{n a}>0$.
- Case $d=\frac{1}{2}$. For every $\{d, \theta, \alpha\} \in R$, the lower bounds on α are $B 1=B 3=1$ and the upper bound is $B 2=\frac{38-52 \theta}{47 \theta-62 \theta^{2}}>1$. Since the numerator in $q_{p}^{a}-q^{n a}$ is negative for every $\alpha<\frac{38-52 \theta}{47 \theta-62 \theta^{2}}$, which is always the case, $q_{p}^{a}-q^{n a}$ is positive.
- Case $d>\frac{1}{2}$. For every $\{d, \theta, \alpha\} \in R$,
i) for $\theta<\theta^{-}(d)$ the numerator in $q_{p}^{a}-q^{n a}$ is negative and therefore $q_{p}^{a}-q^{n a}>0$.
ii) for $\theta \in\left(\theta^{-}(d), \theta^{+}(d)\right), \frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$ is positive but smaller than 1 . Therefore, for $\alpha>\frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$, the numerator in $q_{p}^{a}-q^{n a}$ is negative and $q_{p}^{a}-q^{n a}>0$.

The difference $p_{p}^{a}-p^{n a}$ follows exactly the opposite pattern.

Proof of Proposition 2.

The difference $P^{a a}-2 p_{o}^{a}$ yields an expression whose denominator is negative for $\{d, \theta, \alpha\} \in$ R. The numerator is positive for $\alpha>\alpha^{*}$, as previously defined, and it follows straightforward that $Q^{a a}>Q_{o}^{a}, P^{a a}<P_{p}^{a}, Q^{a a}<Q_{p}^{a}, p^{a a}>p_{p}^{a}$ and $q^{a a}<q_{p}^{a}$.

As for the fares and travel volumes for the partners' short markets, the difference $q^{a a}-q_{o}^{a}$ yields an expression whose denominator is negative for $\{d, \theta, \alpha\} \in R$. The sign of the numerator depends on whether market size α is greater or smaller than $\frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$. The function $\phi_{1}(d, \theta)$ is positive for $\theta \in\left(\theta^{-}(d), \theta^{+}(d)\right)$, where $\theta^{+}(d)>\frac{2}{3}$ and $\theta^{-}(d)=$ $\frac{6-23 d+9 d^{3}+\sqrt{36-84 d+49 d^{2}-52 d^{3}+82 d^{4}+d^{6}}}{4 d\left(5 d^{2}-6\right)}$. The function $\phi_{2}(d, \theta)$ is positive for values of θ above $\tilde{\theta}(d)$, which is a decreasing function in d, it is discontinuous at $d=\frac{1}{2}$ and it lies above $\frac{2}{3}$ for $d>\frac{1}{2}$. When $\theta<\tilde{\theta}(d)$ the numerator in $q^{a a}-q_{o}^{a}$ is positive; when $\theta>\tilde{\theta}(d)$ the numerator in $q^{a a}-q_{o}^{a}$ is positive for $\alpha<\frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$. We have the following cases.

- Case $d<\frac{1}{2}$. For every $\{d, \theta, \alpha\} \in R$,
i) for $\theta<\tilde{\theta}(d)$ the numerator in $q^{a a}-q_{o}^{a}$ is positive and therefore $q^{a a}-q_{o}^{a}<0$.
ii) for $\theta>\tilde{\theta}(d), \frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$ is positive and greater than $B 1$. If $\alpha<\frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$ the numerator in $q^{a a}-q_{o}^{a}$ is positive and hence $q^{a a}-q_{o}^{a}<0$; if $\alpha>\frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$ then $q^{a a}-q_{o}^{a}>0$.
- Case $d=\frac{1}{2}$. For every $\{d, \theta, \alpha\} \in R$, the lower bounds on α are $B 1=B 3=1$ and the upper bound is $B 2=\frac{38-52 \theta}{47 \theta-62 \theta^{2}}>1$. Since the numerator in $q^{a a}-q_{o}^{a}$ is negative for every $\alpha<\frac{38-52 \theta}{47 \theta-62 \theta^{2}}$, which is always the case, then $q^{a a}-q_{o}^{a}$ is positive.
- Case $d>\frac{1}{2}$. For every $\{d, \theta, \alpha\} \in R$,
i) for $\theta<\theta^{-}(d)$ the numerator in $q^{a a}-q_{o}^{a}$ is negative and therefore $q^{a a}-q_{o}^{a}>0$.
ii) for $\theta \in\left(\theta^{-}(d), \theta^{+}(d)\right), \frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$ is positive but smaller than 1 . Therefore, for $\alpha>\frac{\phi_{1}(d, \theta)}{\phi_{2}(d, \theta)}$, the numerator in $q^{a a}-q_{o}^{a}$ is negative and $q^{a a}-q_{o}^{a}>0$.

The difference $p^{a a}-p_{o}^{a}$ follows exactly the opposite pattern.

Proof of Lemma 1.

The denominator in $\Psi^{a}(d, \theta, \alpha)=\frac{\pi_{p}^{a}}{2}-\pi^{n a}$ is positive for any $\{d, \theta, \alpha\} \in R$. The numerator can be written as $\alpha^{2} K_{1}(d, \theta)+\alpha K_{2}(d, \theta)+K_{3}(d, \theta)$ where $K_{1}(d, \theta)$ may be either positive or negative. Solving $K_{1}(d, \theta)=0$ for θ yields several solutions, from which only one is relevant in R. Denote this root by $\widetilde{\theta}(d)$ which is increasing in d. For any $\{d, \theta, \alpha\} \in R$, if $\theta>\widetilde{\theta}(d)$, the function $K_{1}(d, \theta)$ is positive and the numerator in $\Psi^{a}(d, \theta, \alpha)$ is a convex function in α. On the other hand, if $\theta<\widetilde{\theta}(d)$, the function $K_{1}(d, \theta)$ is negative and the numerator in $\Psi^{a}(d, \theta, \alpha)$ is a concave function in α. Solving the numerator in $\Psi^{a}(d, \theta, \alpha)$ for α results in $\alpha^{-}(d, \theta)$ and $\alpha^{+}(d, \theta)$. Thus, there are two constraints on α to be met to have a positive numerator in $\Psi^{a}(d, \theta, \alpha): \alpha \notin\left(\alpha^{-}(d, \theta), \alpha^{+}(d, \theta)\right)$ if $K_{1}(d, \theta)$ is positive; and $\alpha \in\left(\alpha^{-}(d, \theta), \alpha^{+}(d, \theta)\right)$ if $K_{1}(d, \theta)$ is negative.

- If $K_{1}(d, \theta)$ is positive $(\theta>\widetilde{\theta}(d))$, the functions $\alpha^{-}(d, \theta)$ and $\alpha^{+}(d, \theta)$ are either non real or yield an interval outside region R. Hence if $\alpha \notin\left(\alpha^{-}(d, \theta), \alpha^{+}(d, \theta)\right)$ then the numerator in $\Psi^{a}(d, \theta, \alpha)$ is positive and hence $\Psi^{a}(d, \theta, \alpha)>0$.
One can check that $d=0.802$ when $\widetilde{\theta}(d)=0$. Consequently, since $\widetilde{\theta}(d)$ is increasing in $d, d<0.802$ is sufficient to ensure $\Psi^{a}(d, \theta, \alpha)>0$.
- If $K_{1}(d, \theta)$ is negative $(\theta<\widetilde{\theta}(d))$, it is unclear whether α belongs to $\left(\alpha^{-}(d, \theta), \alpha^{+}(d, \theta)\right)$. Nevertheless, one can check that $\Psi^{a}(d, \theta, \alpha)$ is decreasing in α for $d>0.849$. Therefore, we study $\Psi^{a}(d, \theta, \alpha=\underline{\alpha}=B 3)$ for $d>0.849$. Solving $\Psi^{a}(d, \theta, \underline{\alpha})=0$, we obtain a function $\widehat{\theta}(d, \underline{\alpha})$ that is increasing in d as can be seen in Figure $A 2$ below (since there is an upper bound for θ in region $R, \bar{\theta}(d) \equiv L 2$ following the notation in Appendix 1, we include it in the figure):
- Insert here Figure $A 2$ -

For $\theta>\widehat{\theta}(d, \underline{\alpha}), \Psi^{a}(d, \theta, \underline{\alpha})>0$ and then $\Psi^{a}(d, \theta, \alpha)>0$ for any α in R. Since solving $\widehat{\theta}(d, \underline{\alpha})=\bar{\theta}(d)$ yields $\theta=0.08$, it is sufficient to require $\theta>0.08$ to guarantee $\Psi^{a}(d, \theta, \alpha)>0$ for any $\{d, \theta, \alpha\} \in R$.

The value $d=0.856$ is obtained by a numerical method when $\Psi^{a}(d, \theta, \alpha=\bar{\alpha}=B 2)$ since for $d>0.849$ the function $\Psi^{a}(d, \theta, \alpha)$ is decreasing in α. Hence, for $d>0.856$, $\Psi^{a}(d, \theta, \alpha=\bar{\alpha})<0$ and then $\Psi^{a}(d, \theta, \alpha)<0$ for any $\{d, \theta, \alpha\} \in R$.

Proof of Lemma 2.

The first part of the proof is similar to Lemma 1. As for the sufficient conditions, for any $\{d, \theta, \alpha\} \in R$, one can check that $\Psi^{a a}(d, \theta, \alpha)=\frac{\pi^{a a}}{2}-\pi_{o}^{a}$ is increasing in α for low values of d in the interval $d \in(0.707,0.870]$ and decreasing in α for high values of d in this interval. Solving $\Psi^{a a}(d, \theta, \alpha=\underline{\alpha})=0$ and $\Psi^{a a}(d, \theta, \alpha=\bar{\alpha})=0$ yields two functions, $\widehat{\theta}(d, \underline{\alpha})$ and $\widehat{\theta}(d, \bar{\alpha})$ that are increasing in d as can be seen in Figure $A 3$ below.

- Insert here Figure $A 3$ -

Therefore for low values of d in the interval, $\theta>\widehat{\theta}(d, \bar{\alpha})$ implies $\Psi^{a a}(d, \theta, \alpha=\bar{\alpha})>0$ and hence $\Psi^{a a}(d, \theta, \alpha)>0$ for any α in R. Solving $\widehat{\theta}(d, \bar{\alpha})=0$ we obtain the value $d=0.707$. Hence, for $d<0.707, \theta>\widehat{\theta}(d, \bar{\alpha})$, we have that $\Psi^{a a}(d, \theta, \alpha=\bar{\alpha})>0$ and then $\Psi^{a a}(d, \theta, \alpha)>0$.

In happens to be case that $\widehat{\theta}(d, \bar{\alpha})=\widehat{\theta}(d, \underline{\alpha})=\bar{\theta}(d)$ at $d=0.828$ and $\theta=0.195$ and $\Psi^{a a}(d, \theta, \alpha)=0$ for any α in R. Therefore, for $\theta>0.195$, both $\widehat{\theta}(d, \bar{\alpha})$ and $\widehat{\theta}(d, \underline{\alpha})$ are positive, then both $\Psi^{a a}(d, \theta, \alpha=\bar{\alpha})$ and $\Psi^{a a}(d, \theta, \alpha=\underline{\alpha})$ are also positive, and hence $\Psi^{a a}(d, \theta, \alpha)>0$. Similarly, for $d>0.828$ both $\widehat{\theta}(d, \bar{\alpha})$ and $\widehat{\theta}(d, \underline{\alpha})$ are negative, then both $\Psi^{a a}(d, \theta, \bar{\alpha})$ and $\Psi^{a a}(d, \theta, \underline{\alpha})$ are also negative, and hence $\Psi^{a a}(d, \theta, \alpha)<0$.

Figures

Figure $A 1$: Bounds for d and θ in Region R

Figure $A 2$: Proof of Lemma 1

Figure $A 3$: Proof of Lemma 2

[^0]: ${ }^{1}$ There are 20 bounds on α to take into account. Let us denote them by $\mathrm{B}(\cdot)$, putting in the argument the equilibrium condition that gives rise to the bound. The precise expressions can be derived from the equilibrium values provided in the main text. Pre-alliance: $\mathrm{B}\left(q^{n a}>0\right), \mathrm{B}\left(Q^{n a}>0\right) \mathrm{B}\left(1-\theta\left(q^{n a}+Q^{n a}\right)>\right.$ 0), and $\mathrm{B}\left(p^{n a}-1+\frac{\theta\left(q^{n a}+Q^{n a}\right)}{2}>0\right)$; Single alliance: $\mathrm{B}\left(q_{p}^{a}>0\right)$, $\mathrm{B}\left(q_{o}^{a}>0\right), \mathrm{B}\left(Q_{p}^{a}>0\right), \mathrm{B}\left(Q_{o}^{a}>0\right)$, $\mathrm{B}\left(1-\theta\left(q_{o}^{a}+Q_{o}^{a}\right)>0\right), \mathrm{B}\left(1-\theta\left(q_{p}^{a}+Q_{p}^{a}\right)>0\right), \mathrm{B}\left(p_{o}^{a}-1+\frac{\theta\left(q_{o}^{a}+Q_{o}^{a}\right)}{2}>0\right), \mathrm{B}\left(P_{p}^{a}-2+\theta\left(q_{p}^{a}+Q_{p}^{a}\right)>0\right)$,

