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A Appendix: Definition of the relevant region R

A number of restrictions on the parameters d,f and o have to be observed to ensure
positive prices, quantities, marginal costs, margins and the compliance with non-arbitrage
conditions are guaranteed in the three scenarios under consideration. Markets defined by

a triple {d, 0, a} € R guarantee comparable results.

e Bounds on «. Positivity and non-arbitrage conditions in the three considered sce-
narios lead to several bounds in a. After comparing all these bounds and selecting
the most stringent ones, we obtain «a € (a(d,0),a(d,0)) with @(d, ) = min(B1, B2)
and a(d, ) = max(B1, B3,1) where

Bl = 4(4—60+d(20—3+d(50—2)))

= d(20—3)(76—2)+2(2+6—667)+2d2(2+6(100—9))’

__ 40((d—1)d—3)—2(d*-5) _ 4d(30—24d(20—1)) 1
B2 = 0(10—120+(d—4)d(20—1)) and B3 = 4d(2+d)—10+270—4d(7+5d)0+60° (4d(1+d)—3) *

!There are 20 bounds on « to take into account. Let us denote them by B(-), putting in the argument
the equilibrium condition that gives rise to the bound. The precise expressions can be derived from the
equilibrium values provided in the main text. Pre-alliance: B(¢™* > 0), B(Q™* > 0) B(1 — 0(¢"*+Q™*) >
0), and B(p"® — 1 + 292€"™) - 0); Single alliance: B(g¢ > 0), B(g? > 0), B(Q% > 0), B(Q2 > 0),
B(1 — 6(q2+Q%) > 0), B(1 — 6(¢2+Q2) > 0), B(pe — 1 + 29e9) 5 ) B(P2 — 2 4 0(q2+Q%) > 0),



Specifically, B1 comes from ensuring positive equilibrium travel volume in the inter-
line trip for outsiders in the single alliance situation; B2 from positive marginal cost
for partners in the single alliance situation; B3 from the fulfillment of a non-arbitrage

condition for partners in the single alliance situation.

Notice that B1 can be either a lower or an upper bound.

e An illustrative representation can be displayed in space (0, d) - see Figure Al. To
this end, we can compute the bounds on # that come from the difference between
a(d,f) and «(d,0), that is, the bounds ensuring the existence of a positive o such
that we can find markets {d, #,a} € R. We obtain 6 € (0,0(d)) with

L1 for d < %
0(d) = L3 ford e (1,0.618]
L2 for d > 0.618

— _2+3d+2d? — 2d(2+d)-5 — 44d _1: .
where L1 = 5023010 L2 = Nd—3 198 and L3 = =55, The case d = 3 is a particular

case: there is a discontinuity and « is bounded below by B1 = B3 = 1 and above by

__ 38-520
B2 = 470—6202 > 1.

Figure Al below represents L1, L2 and L3. We claim that, for any pair {d,#} in the
region delimited by L1, L2 and L3, there exist values of « € («a(d, 0),@(d,f)) such that we
can find markets {d,0,a} € R.

— Insert here Figure A1 —

More precisely,

e For d < % and 0 < L1, there exist values of a € (B1, B2) such that we can find

markets {d,0,a} € R.

e For d € (1,0.618] and 6 € [L1, L3), there exist values of a € (B3, B1) such that we
can find markets {d, 6, a} € R.

B(py > 0), B(ps > 0), B(Py > 0), B(2p; — Py > 0) and B(Py — p; > 0); Double alliance: B(g** > 0)
B(1—0(¢**4+Q) > 0), and B(P“* —2+6(q“*+Q*) > 0). One can observe that B(pf — 1+ 242 - ¢)
and B(p®®* — 1+ w > 0) simply reduce to o > 1. After comparing all these bounds and selecting
the most stringent ones, we are left with B1, B2 and B3 where B1 =B(Qj5 > 0), B2 =B(1-0(q;+Q5) > 0)
and finally B3 =B(2p;, — Py > 0).



e For d > $ and # < min(L1, L2), there exist values of a € (B3, B2) such that we can
find markets {d,0,a} € R.

In addition, we know that 6 < % from the second order conditions. This means that
economies of traffic density cannot be too high. This makes sense because otherwise

marginal costs would become negative. B

B Appendix: Proofs

Proof of Proposition 1.

The difference Py —2p™* yields an expression whose denominator is negative for {d,0,a} €

. " . _ 4(d6—1) x
R. The numerator is positive for a > a* = 1099 T 12d0% —6—11d9—gg?- Ve how compare o

with the corresponding lower bounds in R. Thus, for d < %, the difference B1— o is

positive and, for d > %, the difference B3— a* is positive too. Therefore, a > a* is always

verified in R. It is straightforward to check that a > «o* also implies Qg > Q™ pt < p™®
Q% < Q" and qf > ¢".

As for the fares and travel volumes for the partners’ short markets, the difference

q, — ¢"* yields an expression whose denominator is negative for {d,0,a} € R. The sign
¢1(d.0)

(@0)"
) =
0(d

of the numerator depends on whether market size « is greater or smaller than o
The function ¢,(d,0) is positive for 0 € (07(d),0"(d)), where 67(d) > 2 and 67 (d

— _d2 3 —6d—5d2 —_6d43 4 . . oy
S-lld—d +4d L\&Q%) Sd”—6d"+17d° ' The function ¢,(d, ) is positive for values of 6 above 6(d),
1

which is a decreasing function in d, it is discontinuous at d = ; and it lies above 2 5 for

d > 1 When 0 < 0(d) the numerator in gy — q"* is positive; when 6 > 0(d) the numerator

in gy — ¢"* is positive for a < ilgz We have the following cases.

e Cased < % For every {d,0,a} € R,
i) for 6 < é(d) the numerator in g; — ¢"* is positive and therefore g, — ¢"* < 0.

ii) for 6 > H(d) %1 da; is positive and greater than Bl. If a < ilg z% the numerator
$1(d,0)

in gy —q""is p081tlve and hence g5 — ¢"* < 0; if a > oadh)’ then g5 — ¢"* > 0.

e Case d = L. For every {d,0,a} € R, the lower bounds on a are Bl = B3 = 1 and
2

the upper bound is B2 = 432:2332 > 1. Since the numerator in g, — ¢"* is negative
for every a < %, which is always the case, ¢; — ¢"* is positive.

3



e Case d > i. For every {d,0,a} € R,

i) for § < 07 (d) the numerator in gj — ¢"* is negative and therefore ¢; — ¢"* > 0.

i) for 0 € (0~ (d),0"(d)), z;gg; is positive but smaller than 1. Therefore, for
$1(d,0)

G0(d.0)’ the numerator in ¢¢ — ¢"* is negative and g% — ¢"* > 0.

o >

The difference p; — p™* follows exactly the opposite pattern. B

Proof of Proposition 2.

The difference P**—2p? yields an expression whose denominator is negative for {d, 8, a} €
R. The numerator is positive for o > a*, as previously defined, and it follows straightfor-
ward that Q** > Qg, P** < Py, Q* < Qy, p** > pj and ¢** < q;.

As for the fares and travel volumes for the partners’ short markets, the difference

q** — q% yields an expression whose denominator is negative for {d,6,a} € R. The sign

of the numerator depends on whether market size « is greater or smaller than %.

The function ¢,(d,6) is positive for 6 € (07(d),07(d)), where 67(d) > 2 and 6 (d) =
6_23d+9d3+¢3615é‘fl§f96‘§2_52d3+82d4+d6. The function ¢,(d, 0) is positive for values of 6 above

é(d), which is a decreasing function in d, it is discontinuous at d = % and it lies above % for

d > 3. When 0 < 0(d) the numerator in ¢ — ¢* is positive; when 6 > 0(d) the numerator

$1(d,0
b2 (d7

in ¢** — ¢¢ is positive for a < . We have the following cases.

e Case d < i. For every {d,0,a} € R,

i) for 6 < A(d) the numerator in ¢°* — ¢® is positive and therefore ¢** — ¢% < 0.

$1(d,0)
b2(d,0)

then q** —qs > 0.

ii) for 6 > H(d) 21(49) 35 positive and greater than B1. If o < the numerator

2(d.0)
in ¢** — ¢4 is p081tlve and hence ¢** — ¢4 < 05 if a > d)l d’@

e Case d = % For every {d,0,a} € R, the lower bounds on « are Bl = B3 = 1 and

38—520
470—6202

which is always the case, then ¢** — g2 is positive.

the upper bound is B2 = > 1. Since the numerator in ¢** — ¢ is negative

38—520
470—620%°

for every a <

e Case d > i. For every {d,0,a} € R,

i) for 8 < 0~ (d) the numerator in ¢** — ¢¢ is negative and therefore ¢** — ¢% > 0.



i) for 0 € (0~(d),0"(d)), Z;Ejg; is positive but smaller than 1. Therefore, for
d)l(dve)

a(d.0) the numerator in ¢** — ¢¢ is negative and ¢** — ¢% > 0.

o >

The difference p** — p? follows exactly the opposite pattern. B

Proof of Lemma 1.

The denominator in ¥*(d,0,a) = % — ™ is positive for any {d,0,a} € R. The
numerator can be written as o?K;(d,0) + aKy(d,0) + Kz(d,0) where K;(d,f) may be
either positive or negative. Solving K;(d,#) = 0 for  yields several solutions, from which
only one is relevant in R. Denote this root by E(d) which is increasing in d. For any
{d,0,a} € R,if 0 > E(d), the function K;(d,#) is positive and the numerator in V*(d, 0, «)
is a convex function in a. On the other hand, if § < (d), the function K,(d, ) is negative
and the numerator in ¥%(d,, «) is a concave function in a. Solving the numerator in
Ve (d, 0, ) for a results in o~ (d,0) and a*(d, ). Thus, there are two constraints on « to
be met to have a positive numerator in ¥*(d, 6, a): a ¢ (o (d,0),a™(d,0)) if Ki(d,0) is
positive; and « € (a~(d,0),a™(d,0)) if K1(d,0) is negative.

o If K1(d,6) is positive (6 > 6(d)), the functions a~(d, ) and a*(d,8) are either non
real or yield an interval outside region R. Hence if o ¢ (a~(d,0),a"(d,#)) then the

numerator in ¥(d, , «) is positive and hence ¥*(d, 0, o) > 0.

One can check that d = 0.802 when g(d) = 0. Consequently, since g(d) is increasing
in d, d < 0.802 is sufficient to ensure ¥(d, 0, a) > 0.

o If K1(d, ) is negative (6 < 8(d)), it is unclear whether a belongs to (a~(d, §), a* (d, ).
Nevertheless, one can check that ¥*(d, 0, ) is decreasing in « for d > 0.849. There-
fore, we study ¥*(d,0,cc = o = B3) for d > 0.849. Solving ¥*(d,0,a) = 0, we
obtain a function E(d, «) that is increasing in d as can be seen in Figure A2 below
(since there is an upper bound for 6 in region R , 8(d) = L2 following the notation

in Appendix 1, we include it in the figure):

— Insert here Figure A2 —
For 6 > 0(d, ), ¥*(d,0,a) > 0 and then ¥*(d, 6, ) > 0 for any a in R. Since solving
/Q\(d, a) = 0(d) yields 6 = 0.08, it is sufficient to require § > 0.08 to guarantee ¥*(d, 0, a) > 0
for any {d,0,a} € R.



The value d = 0.856 is obtained by a numerical method when ¥*(d, 0, = @ = B2)
since for d > 0.849 the function V%(d, 0, «) is decreasing in a. Hence, for d > 0.856,
Ue(d, 0, = @) < 0 and then ¥*(d,0,«) < 0 for any {d,0,a} € R. &

Proof of Lemma 2.

The first part of the proof is similar to Lemma 1. As for the sufficient conditions, for
any {d,0,a} € R, one can check that U**(d,0,a) = % — 7% is increasing in «a for low
values of d in the interval d € (0.707,0.870] and decreasing in « for high values of d in
this interval. Solving ¥**(d, 0, = «) = 0 and ¥*(d, 0, = @) = 0 yields two functions,

6(d, ) and @(d, @) that are increasing in d as can be seen in Figure A3 below.

— Insert here Figure A3 —

Therefore for low values of d in the interval, 6 > §(d,a) implies U (d, 0, = @) > 0
and hence U*(d,f,a) > 0 for any « in R. Solving E(d,a) = 0 we obtain the value
d = 0.707. Hence, for d < 0.707, 6 > 5(d,a), we have that U**(d, 0, « = @) > 0 and then
v (d §,a) > 0.

In happens to be case that g(d, a) = g(d,g) = 0(d) at d = 0.828 and # = 0.195 and
U (d,f,a) = 0 for any a in R. Therefore, for 6 > 0.195, both 6(d, @) and 6(d,a) are
positive, then both ¥ (d, 6, = @) and ¥**(d,0,a = «) are also positive, and hence
Ve (d, 0, «) > 0. Similarly, for d > 0.828 both E(d,a) and a(d, «) are negative, then both
v (d, 0, @) and ¥*(d, 0, «) are also negative, and hence ¥**(d, 0, ) < 0. B
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Figure Al: Bounds for d and 6 in Region R

Figure A2: Proof of Lemma 1
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Figure A3: Proof of Lemma 2



