
Full Appendix of

Strategic Formation of Airline Alliances

NOT FOR PUBLICATION

This is for referee use and it is available at the authors�web pages

Ricardo Flores-Fillol and Rafael Moner-Colonques

October 2006

A Appendix: De�nition of the relevant region R

A number of restrictions on the parameters d; � and � have to be observed to ensure

positive prices, quantities, marginal costs, margins and the compliance with non-arbitrage

conditions are guaranteed in the three scenarios under consideration. Markets de�ned by

a triple fd; �; �g 2 R guarantee comparable results.

� Bounds on �. Positivity and non-arbitrage conditions in the three considered sce-
narios lead to several bounds in �. After comparing all these bounds and selecting

the most stringent ones, we obtain � 2 (�(d; �); �(d; �)) with �(d; �) = min(B1; B2)
and �(d; �) = max(B1; B3; 1) where

B1 � 4(4�6�+d(2��3+d(5��2)))
d(2��3)(7��2)+2(2+��6�2)+2d2(2+�(10��9)) ,

B2 � 4�((d�1)d�3)�2(d2�5)
�(10�12�+(d�4)d(2��1)) and B3 �

4d(3��2+d(2��1))
4d(2+d)�10+27��4d(7+5d)�+6�2(4d(1+d)�3) .
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1There are 20 bounds on � to take into account. Let us denote them by B(�), putting in the argument
the equilibrium condition that gives rise to the bound. The precise expressions can be derived from the

equilibrium values provided in the main text. Pre-alliance: B(qna > 0), B(Qna > 0) B(1� �(qna+Qna) >
0), and B(pna � 1 + �(qna+Qna)

2 > 0); Single alliance: B(qap > 0), B(qao > 0), B(Qap > 0), B(Qao > 0),

B(1 � �(qao+Qao) > 0), B(1 � �(qap+Qap) > 0), B(pao � 1 +
�(qao+Q

a
o)

2 > 0), B(P ap � 2 + �(qap+Qap) > 0),



Speci�cally, B1 comes from ensuring positive equilibrium travel volume in the inter-

line trip for outsiders in the single alliance situation; B2 from positive marginal cost

for partners in the single alliance situation; B3 from the ful�llment of a non-arbitrage

condition for partners in the single alliance situation.

Notice that B1 can be either a lower or an upper bound.

� An illustrative representation can be displayed in space (�; d) - see Figure A1. To
this end, we can compute the bounds on � that come from the di¤erence between

�(d; �) and �(d; �), that is, the bounds ensuring the existence of a positive � such

that we can �nd markets fd; �; �g 2 R. We obtain � 2 (0; �(d)) with

�(d) =

8>><>>:
L1 for d < 1

2

L3 for d 2 (1
2
; 0:618]

L2 for d > 0:618

where L1 � 2+3d+2d2

2(2+3d+d2)
, L2 � 2d(2+d)�5

2(d�3+2d2) and L3 �
4+d
6+4d

. The case d = 1
2
is a particular

case: there is a discontinuity and � is bounded below by B1 = B3 = 1 and above by

B2 = 38�52�
47��62�2 > 1.

Figure A1 below represents L1, L2 and L3. We claim that, for any pair fd; �g in the
region delimited by L1, L2 and L3, there exist values of � 2 (�(d; �); �(d; �)) such that we
can �nd markets fd; �; �g 2 R.

� Insert here Figure A1 �

More precisely,

� For d < 1
2
and � < L1, there exist values of � 2 (B1; B2) such that we can �nd

markets fd; �; �g 2 R.

� For d 2 (1
2
; 0:618] and � 2 [L1; L3); there exist values of � 2 (B3; B1) such that we

can �nd markets fd; �; �g 2 R.

B(pap > 0), B(pao > 0), B(P ap > 0), B(2pap � P ap > 0) and B(P ap � pap > 0); Double alliance: B(qaa > 0)

B(1��(qaa+Qaa) > 0), and B(P aa�2+�(qaa+Qaa) > 0). One can observe that B(pap�1+
�(qap+Q

a
p)

2 > 0)

and B(paa � 1 + �(qaa+Qaa)
2 > 0) simply reduce to � > 1. After comparing all these bounds and selecting

the most stringent ones, we are left with B1, B2 and B3 where B1 �B(Qao > 0), B2 �B(1��(qap+Qap) > 0)
and �nally B3 �B(2pap � P ap > 0).

2



� For d > 1
2
and � < min(L1; L2), there exist values of � 2 (B3; B2) such that we can

�nd markets fd; �; �g 2 R.

In addition, we know that � < 2
3
from the second order conditions. This means that

economies of tra¢ c density cannot be too high. This makes sense because otherwise

marginal costs would become negative. �

B Appendix: Proofs

Proof of Proposition 1.

The di¤erence P ap�2pna yields an expression whose denominator is negative for fd; �; �g 2
R. The numerator is positive for � > �� � 4(d��1)

4d+9�+12d�2�6�14d��6�2 . We now compare �
�

with the corresponding lower bounds in R. Thus, for d < 1
2
, the di¤erence B1� �� is

positive and, for d > 1
2
; the di¤erence B3� �� is positive too. Therefore, � > �� is always

veri�ed in R. It is straightforward to check that � > �� also implies Qap > Q
na, pao < p

na,

Qao < Q
na and qao > q

na.

As for the fares and travel volumes for the partners� short markets, the di¤erence

qap � qna yields an expression whose denominator is negative for fd; �; �g 2 R. The sign
of the numerator depends on whether market size � is greater or smaller than �1(d;�)

�2(d;�)
.

The function �1(d; �) is positive for � 2 (��(d); �+(d)), where �+(d) > 2
3
and ��(d) =

3�11d�d2+4d3+
p
9�6d�5d2�6d3+17d4

4d(2d2�3) . The function �2(d; �) is positive for values of � above ~�(d),

which is a decreasing function in d, it is discontinuous at d = 1
2
and it lies above 2

3
for

d > 1
2
. When � < ~�(d) the numerator in qap � qna is positive; when � > ~�(d) the numerator

in qap � qna is positive for � <
�1(d;�)
�2(d;�)

. We have the following cases.

� Case d < 1
2
. For every fd; �; �g 2 R,

i) for � < ~�(d) the numerator in qap � qna is positive and therefore qap � qna < 0.

ii) for � > ~�(d); �1(d;�)
�2(d;�)

is positive and greater than B1. If � < �1(d;�)
�2(d;�)

the numerator

in qap � qna is positive and hence qap � qna < 0; if � >
�1(d;�)
�2(d;�)

, then qap � qna > 0.

� Case d = 1
2
. For every fd; �; �g 2 R, the lower bounds on � are B1 = B3 = 1 and

the upper bound is B2 = 38�52�
47��62�2 > 1. Since the numerator in q

a
p � qna is negative

for every � < 38�52�
47��62�2 ; which is always the case, q

a
p � qna is positive.
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� Case d > 1
2
. For every fd; �; �g 2 R,

i) for � < ��(d) the numerator in qap � qna is negative and therefore qap � qna > 0.

ii) for � 2 (��(d); �+(d)); �1(d;�)
�2(d;�)

is positive but smaller than 1. Therefore, for

� > �1(d;�)
�2(d;�)

, the numerator in qap � qna is negative and qap � qna > 0.

The di¤erence pap � pna follows exactly the opposite pattern. �

Proof of Proposition 2.

The di¤erence P aa�2pao yields an expression whose denominator is negative for fd; �; �g 2
R. The numerator is positive for � > ��, as previously de�ned, and it follows straightfor-

ward that Qaa > Qao, P
aa < P ap , Q

aa < Qap, p
aa > pap and q

aa < qap .

As for the fares and travel volumes for the partners� short markets, the di¤erence

qaa � qao yields an expression whose denominator is negative for fd; �; �g 2 R. The sign
of the numerator depends on whether market size � is greater or smaller than �1(d;�)

�2(d;�)
.

The function �1(d; �) is positive for � 2 (��(d); �+(d)), where �+(d) > 2
3
and ��(d) =

6�23d+9d3+
p
36�84d+49d2�52d3+82d4+d6
4d(5d2�6) . The function �2(d; �) is positive for values of � above

~�(d), which is a decreasing function in d, it is discontinuous at d = 1
2
and it lies above 2

3
for

d > 1
2
. When � < ~�(d) the numerator in qaa � qao is positive; when � > ~�(d) the numerator

in qaa � qao is positive for � <
�1(d;�)
�2(d;�)

. We have the following cases.

� Case d < 1
2
. For every fd; �; �g 2 R,

i) for � < ~�(d) the numerator in qaa � qao is positive and therefore qaa � qao < 0.

ii) for � > ~�(d); �1(d;�)
�2(d;�)

is positive and greater than B1. If � < �1(d;�)
�2(d;�)

the numerator

in qaa � qao is positive and hence qaa � qao < 0; if � >
�1(d;�)
�2(d;�)

then qaa � qao > 0.

� Case d = 1
2
. For every fd; �; �g 2 R, the lower bounds on � are B1 = B3 = 1 and

the upper bound is B2 = 38�52�
47��62�2 > 1. Since the numerator in q

aa � qao is negative
for every � < 38�52�

47��62�2 ; which is always the case, then q
aa � qao is positive.

� Case d > 1
2
. For every fd; �; �g 2 R,

i) for � < ��(d) the numerator in qaa � qao is negative and therefore qaa � qao > 0.
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ii) for � 2 (��(d); �+(d)); �1(d;�)
�2(d;�)

is positive but smaller than 1. Therefore, for

� > �1(d;�)
�2(d;�)

, the numerator in qaa � qao is negative and qaa � qao > 0.

The di¤erence paa � pao follows exactly the opposite pattern. �

Proof of Lemma 1.

The denominator in 	a(d; �; �) =
�ap
2
� �na is positive for any fd; �; �g 2 R. The

numerator can be written as �2K1(d; �) + �K2(d; �) + K3(d; �) where K1(d; �) may be

either positive or negative. Solving K1(d; �) = 0 for � yields several solutions, from which

only one is relevant in R. Denote this root by e�(d) which is increasing in d. For any
fd; �; �g 2 R, if � > e�(d), the function K1(d; �) is positive and the numerator in 	a(d; �; �)

is a convex function in �. On the other hand, if � < e�(d), the function K1(d; �) is negative

and the numerator in 	a(d; �; �) is a concave function in �. Solving the numerator in

	a(d; �; �) for � results in ��(d; �) and �+(d; �). Thus, there are two constraints on � to

be met to have a positive numerator in 	a(d; �; �): � =2 (��(d; �); �+(d; �)) if K1(d; �) is

positive; and � 2 (��(d; �); �+(d; �)) if K1(d; �) is negative.

� If K1(d; �) is positive (� > e�(d)), the functions ��(d; �) and �+(d; �) are either non
real or yield an interval outside region R. Hence if � =2 (��(d; �); �+(d; �)) then the
numerator in 	a(d; �; �) is positive and hence 	a(d; �; �) > 0.

One can check that d = 0:802 when e�(d) = 0. Consequently, since e�(d) is increasing
in d, d < 0:802 is su¢ cient to ensure 	a(d; �; �) > 0.

� IfK1(d; �) is negative (� < e�(d)), it is unclear whether � belongs to (��(d; �); �+(d; �)).
Nevertheless, one can check that 	a(d; �; �) is decreasing in � for d > 0:849. There-

fore, we study 	a(d; �; � = � = B3) for d > 0:849. Solving 	a(d; �; �) = 0, we

obtain a function b�(d; �) that is increasing in d as can be seen in Figure A2 below
(since there is an upper bound for � in region R , �(d) � L2 following the notation
in Appendix 1, we include it in the �gure):

� Insert here Figure A2 �

For � > b�(d; �), 	a(d; �; �) > 0 and then 	a(d; �; �) > 0 for any � in R. Since solvingb�(d; �) = �(d) yields � = 0:08, it is su¢ cient to require � > 0:08 to guarantee	a(d; �; �) > 0
for any fd; �; �g 2 R.
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The value d = 0:856 is obtained by a numerical method when 	a(d; �; � = � = B2)

since for d > 0:849 the function 	a(d; �; �) is decreasing in �. Hence, for d > 0:856,

	a(d; �; � = �) < 0 and then 	a(d; �; �) < 0 for any fd; �; �g 2 R. �

Proof of Lemma 2.

The �rst part of the proof is similar to Lemma 1. As for the su¢ cient conditions, for

any fd; �; �g 2 R, one can check that 	aa(d; �; �) = �aa

2
� �ao is increasing in � for low

values of d in the interval d 2 (0:707; 0:870] and decreasing in � for high values of d in
this interval. Solving 	aa(d; �; � = �) = 0 and 	aa(d; �; � = �) = 0 yields two functions,b�(d; �) and b�(d; �) that are increasing in d as can be seen in Figure A3 below.

� Insert here Figure A3 �

Therefore for low values of d in the interval, � > b�(d; �) implies 	aa(d; �; � = �) > 0
and hence 	aa(d; �; �) > 0 for any � in R. Solving b�(d; �) = 0 we obtain the value

d = 0:707. Hence, for d < 0:707, � > b�(d; �), we have that 	aa(d; �; � = �) > 0 and then
	aa(d; �; �) > 0.

In happens to be case that b�(d; �) = b�(d; �) = �(d) at d = 0:828 and � = 0:195 and

	aa(d; �; �) = 0 for any � in R. Therefore, for � > 0:195, both b�(d; �) and b�(d; �) are
positive, then both 	aa(d; �; � = �) and 	aa(d; �; � = �) are also positive, and hence

	aa(d; �; �) > 0. Similarly, for d > 0:828 both b�(d; �) and b�(d; �) are negative, then both
	aa(d; �; �) and 	aa(d; �; �) are also negative, and hence 	aa(d; �; �) < 0. �
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Figures

Figure A1: Bounds for d and � in Region R

Figure A2: Proof of Lemma 1
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Figure A3: Proof of Lemma 2
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