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Abstract 
Rechenauer (2008) claims that weak preference is a better starting point for preference relations than 
strict preferences. This contention is challenged. Definitional connections between weak and strict 
preference are suggested that lead to the opposite conclusion. This is not taken as a justification of the 
superiority of strict over weak preference as the primitive preference relation, but just as evidence that the 
given connections make a structure richer than the other. It is also make precise the sense in which weak 
and strict preference can be considered equivalent. The idea just consists of taking into account the other 
two implicit binary relations, indifference and non-comparability.  
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1. Introduction 
 
This paper challenges the analysis and conclusions put forward by Rechenauer (2008), 
who contends that the concept of weak preference is a better starting point for 
preference relations than the concept of strict preference. As hinted at by Rechenauer 
(2008, p. 386), for both approaches to be equivalent, “Given an appropriate definitional 
connection between these two sorts of preference relations, one should end up in the 
same place”. He adopts definitional connections under which a complete and transitive 
weak preference R implies that the strict preference P is asymmetric and negatively 
transitive, but under which the converse is not true. He also questions two definitional 
connections making the converse true. But he fails to observe that criticisms analogous 
to those raised against the latter connections can be used against his own connections. In 
fact, the choice of definitional connections between R and P exhibits an asymmetry that 
explains the alleged non-equivalence of R and P (and the apparent superiority of R). 
 
 
2. On Rechenauer’s result 
 
Rechenauer (2008, p. 386) takes for granted (1) and (2), where I represents indifference, 
R represents weak preference and P represents strict preference. 
 

xIy ↔ (xRy ∧ yRx)     (1) 
xRy ↔ (xPy ∨ xIy)     (2) 

 
This already reveals a first asymmetry: why is indifference defined in terms of R but not 
also in terms of P? The only justification of (1) that Rechenauer (2008, p. 386) offers is 
that it is needed. But when discussing Fishburn’s (1970, p. 13) result that P asymmetric 
and negatively transitive implies R complete and transitive, Rechenauer (2008, p. 387) 
questions the use of (3), which Fishburn (1970, p. 12) considers a definition, not an 
assumption. 

 
xIy ↔ (¬xPy ∧ ¬yPx)     (3) 

 
(3) is criticized on the grounds that (¬xPy ∧ ¬yPx) → xIy is completeness of R in 
disguise. This is not entirely true, since (3) implies completeness in the presence of (1) 
and (2). In any case, (1) is open to a similar criticism: it could be deemed asymmetry of 
P in disguise, given (1) and (4). Condition (4) asserts that the disjunction in (1) is the 
exclusive disjunction: either xPy or xIy. 
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¬(xIy ∧ xPy)             (4) 

 
Remark 1. If (1), (2) and (4) hold, then P is asymmetric. 
 
Suppose not: xPy and yPx. By (2), xPy ∨ xIy → xRy. Therefore, xPy implies xRy. By 
(2), yPx ∨ yIx → yRx. Consequently, yPx implies yRx. By (1), xRy and yRx imply xIy. 
As a result, xIy ∧ xPy, which contradicts (4). 
 

xRy → ¬yPx            (5) 
¬yPx → xRy            (6) 

 
Rechenauer (2008, p. 388) proves that, assuming (1), (2) and (5), if R is complete and 
transitive, then P is asymmetric and negatively transitive. He also shows that the 
converse is not true. This asymmetric result motivates his contention that R is a better 
primitive than P. 
 
It is curious that attention is not drawn to the fact that (2) and (5) suffice to prove the 
asymmetry of P. When discussing the possibility of considering (6), whose inclusion 
would make the converse of his result true, he observes that (6) is logically equivalent 
to completeness of R (claim that requires the presence of (2)). So (6) is criticized on the 
grounds that it is again incompleteness of R in disguise. This is another instance of 
asymmetric reasoning: (6) is rejected because, together with (2), implies that R is 
complete; but (5) is accepted despite the fact that, together with (2), implies that P is 
asymmetric. 
 
After proving that (2) and (6) imply completeness of R, Rechenauer (2008, p. 387) 
asserts: “This is bad. For, using (1) [here, the conjunction of (5) and (6)] or (3) [here 
(6)] as a definitional connection between R and P, our theorem really says that if P is 
asymmetric and negatively transitive and R is complete, then R is complete and 
transitive”. This notwithstanding, he does not apply the same measuring stick to his own 
result: since (2) and (5) imply asymmetry of P, it appears that he should have stressed 
that he has shown (page 388, lines 1 and 2) that if R is complete and transitive and P is 
asymmetric, then P is asymmetric and negatively transitive. So, by symmetry, (6) is 
challengeable if and only if (5) is. 
 
What in any case should be pointed out is that a justifiable definitional connection 
between R and P need not be discarded just because it carries with it a property that one 
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would like to obtain from other assumptions. Otherwise, following Remark 2, one 
would be forced to remove at least one of the three conditions (1), (2) and (4), all of 
which seem unobjectionable when one takes R as primitive. 
 
Remark 2. If (1), (2) and (4) hold, then P is asymmetric. 
 
Suppose not: xPy and yPx. By (2), xPy implies xRy. By (2), yPx implies yRx. By (1), 
xIy. By (4), ¬xPy: contradiction. 
 
 
3. The opposite of Rechenauer’s result 
 
In Rechenauer’s view, the conjunction of (2) and (6) produces an undesirable result. His 
response is to discard (6). An alternative approach consists of dispensing with (2). 
Remark 3 next suggests that (4) may be considered a good candidate: given (1) and (4), 
(6) cannot be deemed completeness in disguise (so Rechenauer’s criticism against (6) 
could be viewed as excessive). 
 
Remark 3. (1), (4) and (6) do not imply that R is complete. 
 
Let X = {x, y, z}. The binary relation R on X is such that, for all a ∈ X and b ∈ X\{a}, 
¬aRb. It is clear that R is not complete. The binary relation P on X is such that, for all a 
∈ X and b ∈ X\{a}, aPb. (6) holds because, for all a ∈ X and b ∈ X\{a}, ¬aRb and bPa. 
And (4) holds because, according to (1), aIb is never the case. 
 
Proposition 4. Assume (1), (4) and (6). (i) If P is asymmetric and negatively transitive, 
then R is complete and transitive. (ii) The converse does not hold. 
 
Proof. (i) Suppose ¬yRx. By (6), ¬yRx → xPy. Hence, xPy. By asymmetry of P, ¬yPx. 
By (6), xRy. This proves the completeness of R: ¬yRx implies xRy. Suppose R is not 
transitive: xRy, yRz and ¬xRz. By (6), ¬xRz implies zPx. By asymmetry, ¬xPz. By (6), 
zRx. Since P is negatively transitive, zPx implies zPy or yPx. If yPx, then, by 
asymmetry, ¬xPy. By (6), yRx. Therefore, by (1), yRx and xRy imply yIx. But then 
having yIx and yPx contradicts (4). If zPy, then, by asymmetry, ¬yPz. By (6), zRy. 
Hence, by (1), zRy and yRz imply zIy. But then having zIy and zPy contradicts (4). 
 
(ii) Let X = {x, y, z}. The complete and transitive binary relation R on X is such that xRy, 
yRz and xRz. The binary relation P on X is such that xPy, yPz, xPz and zPx. As xPz and 
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zPx, P is not asymmetric. In addition, ¬zPy, ¬yPx and zPx, so P is not negatively 
transitive. To show that (6) holds, consider the two cases in which ¬aPb. With respect 
to ¬zPy, R is such that yRz; and, concerning, ¬yPx, R is such that xRy. On the other 
hand, consider the three cases in which ¬aRb. As regards ¬yRx, xPy holds; with respect 
to ¬zRy, yPz holds; and concerning ¬zRx, xPz holds. In sum, (6) is satisfied. Finally, (4) 
holds because, according to (1), aIb is never the case.  
 
Mimicking Rechenauer’s strategy, one could take Proposition 4 as a reason to think of P 
as the better starting point for preference relations. But this conclusion, as well as 
Rechenauer’s, is precipitate because it is the result of definitional connections between 
P and R that are, more or less obviously, biased against one of the two preference 
relations. It will argued in the next section that there are good reasons to accept the 
equivalence of weak and strict preference. 
 
Before proceeding with the justification of the equivalence, another result that 
apparently points to the superiority of P over R is suggested. It relies on (7), obtained by 
inserting (3) into (2). As might be expected, (7) also implies (6): if ¬yPx, then (xPy ∨ 
¬yPx) holds and, by (7), xRy. 
 

xRy ↔ (xPy ∨ ¬yPx)               (7) 
 
Proposition 5. Assume (7). (i) If R is complete and transitive, then P is asymmetric and 
negatively transitive. (ii) The converse does not hold. 
 
Proof. (i) Part 1: if (7) holds, then R is complete. Suppose not: ¬xRy ∧ ¬yRx. By (7), 
¬xRy implies ¬xPy ∧ yPx. Similarly, by (7), ¬yRx implies ¬yPx ∧ xPy. It then follows 
from (¬xRy ∧ ¬yRx) that (¬xPy ∧ yPx ∧ ¬yPx ∧ xPy), which leads to the contradiction 
yPx ∧ ¬yPx. 
 
Part 2: if (7) holds and P is asymmetric and negatively transitive, then R is transitive. 
Assume xRy, yRz and ¬xRz. By (7), 
 

¬xPz ∧ zPx.          (8) 
 
By (7), xRy implies xPy ∨ ¬yPx. By (7), yRz implies yPz ∨ ¬zPy. This leads to four 
possibilities. Case 1: xPy ∧ yPz. By asymmetry of P, xPy implies ¬yPx. By asymmetry 
of P, yPz implies ¬zPy. As P is negatively transitive, ¬zPy and ¬yPx imply ¬zPx, 
contradicting (8). Case 2: xPy ∧ ¬zPy. By (8) and negative transitivity, ¬xPz and ¬zPy 



−6− 

imply ¬xPy, which contradicts xPy. Case 3: ¬yPx ∧ yPz. By (8) and negative 
transitivity, ¬yPx and ¬xPz imply ¬yPz, which contradicts yPz. Case 4: ¬yPx ∧ ¬zPy. 
By negative transitivity, ¬zPx, which contradicts (8). 
 
(ii) Let X = {x, y, z}. The complete and transitive binary relation R on X is such that, for 
all a ∈ X and b ∈ X\{a}, aRb. The binary relation P on X is such that, for all a ∈ X and 
b ∈ X\{a}, aPb. Evidently, P is not asymmetric. Moreover, for all a ∈ X and b ∈ X\{a}, 
aRb ↔ aPb. In view of this, (7) holds.  
 
 
4. An equivalence result 
 
Consider the definitional connections displayed in the following two tables, where N is 
the non-comparability relation. 
 
    yPx ¬yPx     yRx ¬yRx 
  xPy  xNy   xRy   xRy  xIy   xPy 
          ¬xPy  yRx   xIy           ¬xRy  yPx   xNy 
 
The above may be regarded as natural definitional connections between the four 
relations involved. For instance, taking P as primitive, having both xPy and yPx 
expresses the incomparability between x and y, whereas having both ¬xPy and ¬yPx 
expresses the indifference between x and y. When R is taken as primitive, 
incomparability is represented by ¬xRy and ¬yRx, whereas indifference is associated 
with xPy and yPx. 
 
When one has been accustomed to thinking in terms of R, the definition of xIy as ¬xPy 
∧ ¬yPx may appear questionable. But, otherwise, what does ¬xPy ∧ ¬yPx express? If it 
is argued that it may be interpreted as incomparability, then what does xPy ∧ yPx 
represent? Incomparability as well? In this case, why not consider xRy ∧ yRx also as 
expressing incomparability? If one accepts the view that the four combinations between 
xRy, ¬xRy, yRx and ¬yRx represent different preference situations, then that view 
should also be accepted with respect to the four combinations between xPy, ¬xPy, yPx 
and ¬yPx. As one of those combinations must express indifference, the natural property 
of asymmetry prevents considering the case xPy ∧ yPx as indifference. 
 

xNy ↔ (xPy ∧ yPx)                 (9) 
xPy ↔ (¬yRx ∧ ¬xNy)      (10) 
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(9) and (10) adapt (1) and (2) to the strict preference framework, with N playing the role 
of I. 
 
Remark 6. If P is asymmetric, then (9) and (10) imply (5) and (6).  
 
If P is asymmetric, then it is always true that ¬xNy. Hence, (¬yRx ∧ ¬xNy) is 
equivalent to ¬yRx. By (10), ¬yRx equivalent to (¬yRx ∧ ¬xNy) implies that ¬yRx is 
equivalent to xPy. That is, xPy ↔ ¬yRx. 
 
Proposition 7. If (9) and (10) hold, then: (i) P is asymmetric if and only if R is 
complete; and (ii) P is negatively transitive if and only if R is transitive. 
 
Proof. (i) Suppose P asymmetric. If ¬xRy, then, by Remark 6, yPx. By asymmetry, 
¬xPy. By Remark 6, ¬xPy implies yRx. Suppose R complete. If xPy and yPx, then, by 
(10), xPy → (¬yRx ∧ ¬xNy) and yPx → (¬xRy ∧ ¬yNx). Accordingly, xPy implies 
¬yRx and yPx implies ¬xRy, which contradicts completeness. 
 
(ii) Let P be negatively transitive. Assume xRy and yRz. By (10), xRy ∨ yNx → ¬yPx. 
Hence, xRy implies ¬yPx. By (10), yRz ∨ zNy → ¬zPy. Therefore, yRz implies ¬zPy. 
As P is negatively transitive, ¬zPy and ¬yPx imply ¬zPx. By (10), ¬zPx → (xRz ∨ 
zNx). By (9), ¬zPx implies ¬zNx. As a result, xRz holds. This proves the transitivity of 
R. On the other hand, let R be transitive. Assume ¬xPy and ¬yPz. By (10), ¬xPy → 
(yRx ∨ xNy). Given ¬xPy, by (9), xNy does not hold. Consequently, ¬xPy implies yRx. 
By (10), ¬yPz → (zRy ∨ yNz). By (9), ¬yPz yields ¬xNy, for which reason ¬yPz 
implies zRy. In sum, zRy and yRx. By transitivity of R, zRx. By (10), zRx ∨ xNz → 
¬xPz. In view of this, zRx implies ¬xPz, which shows P to be negatively transitive.  
 
Proposition 7 expresses the equivalence of weak and strict preference under (9) and (10) 
that those taking P. (9) states that having x strictly preferred to y and vice versa 
represents incomparability. (10) asserts that having x strictly preferred to y is equivalent 
to the conjunction of two conditions: that x and y are comparable and that y is not 
weakly preferred to x. The equivalence is strong in the sense that completeness of R is 
made equivalent to asymmetry of P, whereas transitivity of R is made equivalent to 
negative transitivity of P. 
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5. Another equivalence result 
 
One may dislike Proposition 7 because of the atypical binary relation N. This problem 
can be solved by just inserting (9) into (10). Be that as it may, another equivalence 
result will be presented that relies on conditions involving only P and R. 

 
xPy → xRy       (11) 

(xRy ∧ yRx) ↔ (¬xPy ∧ ¬yPx)          (12) 
 
It is difficult to raise objections against (11): strict preference implies weak preference. 
(12) is the outcome of identifying the two ways in which indifference is conceptualized 
in terms of strict and weak preference. (12) is the conjunction of (13) and (14). 

 
(¬xPy ∧ ¬yPx) → (xRy ∧ yRx)          (13) 
 (xRy ∧ yRx) → (¬xPy ∧ ¬yPx)           (14) 

 
Lemma 8. If (11) and (13) hold, then R is complete. 
 
Proof. Suppose not: ¬xRy and ¬yRx. By (11), ¬xRy implies ¬xPy. By (11), ¬yRx 
implies ¬yPx. Therefore, ¬xPy ∧ ¬yPx. By (13), xRy ∧ yRx: contradiction.  
 
Lemma 9. If (11) and (14) hold, then P is asymmetric. 
 
Proof. Suppose not: xPy and yPx. By (11), xPy implies xRy. By (11), yPx implies yRx. 
Consequently, xRy ∧ yRx. By (14), ¬xPy ∧ ¬yPx: contradiction.  
 
Lemma 10. If (11) and (12) hold, then P negatively transitive implies R transitive. 
 
Proof. Suppose not: xRy, yRz and ¬xRz. By (11), ¬xRz implies ¬xPz. If ¬zPx, then, by 
(13), xRz ∧ zRx, which contradicts ¬xRz. Therefore, zPx. If yRx, then the assumption 
xRy and (14) imply ¬xPy and ¬yPx. On the other hand, if ¬yRx, then, by (11), ¬yPx. 
Consequently, no matter whether yRx or ¬yRx, ¬yPx holds. If ¬zPy, then ¬yPx and the 
negative transitivity of P imply ¬zPx, contradicting the previous conclusion that zPx. 
Accordingly, zPy. By (11), zRy. By assumption, yRz. In view of this, by (14), ¬zPy and 
¬yPz, contradicting zPy.  
 
Lemma 11. If (11) and (12) hold, then R transitive implies P negatively transitive. 
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Proof. Suppose not: ¬xPy, ¬yPz and xPz. By (11), xPz implies xRz. If zRx, then, by 
(14), ¬xPz ∧ ¬zPx, which contradicts xPz. Therefore, ¬zRx. If ¬zPy, then the 
assumption ¬yPz and (13) imply zRy and yRz. On the other hand, if zPy, then, by (11), 
zRy. Consequently, zRy holds regardless of whether ¬zPy or zPy. If ¬yPx, then the 
assumption ¬xPy and (13) imply xRy and yRx. If, alternatively, yPx, then, by (11), yRx. 
Accordingly, yRx holds irrespectively of whether ¬yPx or yPx. By transitivity of R, zRy 
and yRx imply zRx, which contradicts the previous conclusion that ¬zRx.  
 
Proposition 12. If (11) and (12) hold, then R is complete and transitive if and only if P 
is asymmetric and negatively transitive. 
 
Proof. Lemmas 8, 9, 10 and 11.  
 
Remark 13. (12) cannot be weakened into (13) in Proposition 12. 
 
Let X = {x, y, z}. The binary relation R on X is such that, for all a ∈ X and b ∈ X\{a}, 
aRb. The binary relation P on X is such that xPz. It is not difficult to verify that (11) and 
(13) hold. Despite this, P is not negatively transitive. 
 
Remark 14. (12) cannot be weakened into (14) in Proposition 12. 
 
With X = {x, y, z}, the binary relation R on X is such that xRy, yRz and xRz. The binary 
relation P on X is such that xPz. It is not difficult to verify that (11) and (14) hold. This 
notwithstanding, P is not negatively transitive. 
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