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Abstract 

The Hirsch index is a number that synthesizes a researcher’s output. It is defined as the maximum number 

h such that the researcher has h papers with at least h citations each. Woeginger (2008) suggests an 

axiomatic characterization of the Hirsch index using monotonicity as one of the axioms. This note 

suggests three characterizations without adopting the monotonicity axiom. 
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1. Introduction 

 

This paper offers three axiomatic characterizations of the Hirsch (2005) index; see 

Wikipedia (2008) for a discussion of advantages and criticisms of the Hirsch index. The 

three differ from Woeginger’s (2008) characterization in requiring fewer axioms (three 

instead of five) and in dispensing with the axiom on which Woeginger’s result hinges 

conceptually: monotonicity (more citations or papers do not lower the index).  

 

 

2. Definitions and axioms 

 

Let ℕ be the set of non-negative integers and ℝ the set of non-negative real numbers. 

Members of ℕ represent both the number of papers of a given researcher an the number 

of citations that a paper can receive. Define X to be the set of all vectors x = (x1, x2, … , 

xn) such that n ∈ ℕ\{0} and x1 ≥ x2 ≥ … ≥ xn. For x ∈ X: (i) dx is the number of 

components of vector x (the dimension or size of x); (ii) cx is the number of components 

of vector x different from 0; (iii) for i ∈ {1, … , dx}, xi is the ith component of vector x 

and stands for the total number of citations of paper i; and (iv) x
Σ
 = x1 + x2 + … + xdx is 

the sum of the dx components of x (the weight of x). With ∅ designating the empty 

vector (the no paper case), a researcher’s output will be represented by a member of D = 

X ∪ {∅}. For x = ∅ the convention is that cx = dx = min{x1, … , xdx} = 0. 

 

Definition 2.1. A research output index (or index, for short) is a mapping f : D → ℝ. 

 

Woeginger (2008, p. 225) defines an (impact) index as a mapping f : D → ℕ satisfying 

the monotonicity property MON and such that, for all x ∈ X with cx = 0, f(x) = 0. 

 

MON. For all x ∈ D and y ∈ D, x ≥ y implies f(x) ≥ f(y). 

 

The definition of an index as an integer-valued mapping is restrictive because it 

excludes such reasonable indices as the average citation index. In addition, assuming 

f(x) = 0 when cx = 0 and dx ≥ 1 is also restrictive because an index need not always be 

interpreted as an impact index: viewed as a research output index, it is not unreasonable 

to attribute value to the production of papers and make f(0, … , 0) ≠ 0. Finally, 

Woeginger (2008, p. 227) stresses that his axioms should be interpreted within the 

context of MON. Though it is difficult to question MON as a desirable property of an 

index, it may be worth approaching the characterization of the Hirsch index without 

constraining the choice of axioms by their connection with MON.  
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Definition 2.2. The Hirsch index is the research output index h such that f(∅) = 0 and, 

for all x ∈ X, h(x) = max{n ∈ {0, 1, … , cx}: xn ≥ n}. 

 

A1. For all x ∈ X, if cx = dx then min{min{x1, … , xdx}, dx} ≤ f(x) ≤ dx. 

 

A1 sets upper and lower bounds to the index in the case in which all the papers are 

cited: on the one hand, the index cannot be greater than the number dx of papers; and, on 

the other, the index is, as long as this is consistent with the previous constraint, not 

smaller than the smallest number of citations. A1 establish that the index is bounded 

above by size and bounded below by the smallest magnitude between size and weight. 

 

For x ∈ X and y ∈ X: (i) the distance δ(x, y) between x ∈ X and y ∈ X is defined as δ(x, 

y) = max{x
Σ
, y

Σ
} − min{x

Σ
, y

Σ
}; and (ii) x ≥ y holds if, and only if, dx ≥ dy and, for all i ∈ 

{1, … , dy}, xi ≥ yi. With respect to the empty vector ∅: (i) for all x ∈ X, δ(x, ∅) = δ(∅, 

x) = x
Σ
; and (ii) for all x ∈ X, x ≥ ∅. Define D0 = {x ∈ D: dx = 0} = {∅} and, for n ∈ 

ℕ\{0}, Dn = {x ∈ D: dx = n}. 

 

A2. For all n ∈ ℕ, x ∈ Dn and y ∈ Dn+1, if y ≥ x and f(y) > f(x) = max{f(z)}z∈Dn
 then δ(x, 

y) > cx. 

 

Suppose x is an output with size n reaching the maximum index that size n allows and 

that x is subsequently expanded by gaining weight (the number of citations of existing 

papers) or size (by adding another paper, possibly receiving some citation). Suppose 

this output expansion generates an increase of the index. By A2, the weight necessary to 

achieve this must be higher than the number cx of cited papers in x; that is, if the 

maximum index reachable in Dn requires all papers to be cited, the new output y must 

have more than n citations more than x. Roughly speaking, if more citations and one 

more paper rise the index of an output already achieving the maximum index in the 

domain of outputs with n papers then more than n citations must have been necessary. 

This suggests that, once the maximum index in a size category has been reached, a 

further increase in the index by jumping to the next size category demands adding at 

least the equivalent to one citation to each cited paper. 

 

It may appear that A2 brings an index very close to the Hirsch index. Nonetheless, A2 

does not imply MON: the index f(x) = 1 / (1 + h(x)) satisfies A2 but not MON. 
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A2 can be generalized to a family of axioms of the sort “if y ≥ x and f(y) > f(x) then δ(x, 

y) > c(x, y)”, for any given c : D × D → ℝ. For instance, the use of the constant function 

c(x, y) = 0 suggests that the index is one in which each citation count, as occurs, for 

instance, with the index generating the average number of citations. 

 

A21. For all n ∈ ℕ, x ∈ Dn and y ∈ Dn+1, if y ≥ x and max{f(z)}z∈Dn+1
 = f(y) > f(x) then 

δ(x, y) > cx. 

 

A21 is a version of A2 in which it is not the initial output x that is required to reach the 

highest index within the set of outputs of its size but the final output y. 

 

A22. For all n ∈ ℕ, k ∈ ℕ\{0}, x ∈ Dn and y ∈ Dn+k, if y ≥ x and max{f(z)}z∈Dn+k
 = f(y) > 

f(x) = max{f(z)}z∈Dn
 then δ(x, y) > kcx. 

 

A22 is less general than A2 in forcing both inputs to reach maximum index in their 

respective category sizes but is more general in relating several sizes. In this respect, 

A22 is, in a way, a transitive version of A2: if, under the given constraints, going from 

size n to size n + 1 takes more than n citations, then going from size n to n + k must take 

more than kn citations. The results in Section 3 suggest that, to a certain extent, A2, A21 

and A22 are exchangeable conditions, with A21 and A22 being closer substitutes for 

each other than A2. For n ∈ ℕ\{0} and x ∈ Dn, x−n = (x1, … , xn−1)  is the member of 

Dn−1 obtained from x by deleting the last component xn of x. 

 

A3. For all n ∈ ℕ\{0} and x ∈ Dn, if f(x) ≠ max{f(y)}y∈Dn
 then f(x) = f(x−n). 

 

By A3, if an output without minimum size is not achieving the maximum index 

corresponding to its size then losing the last paper should not affect the index. A3 can 

be viewed as a weak version of paper monotonicity, because it identifies a situation in 

which having one paper more does not lower the index: when the addition of another 

paper does not make the resulting output attain the maximum index associated with its 

size, then the paper is worthless in the sense that its presence or absence does not 

modify the index. Even seen as a monotonicity property, A3 is weaker than MON, that 

expresses both paper and citation monotonicity.  

 

A4. For all x ∈ X, and letting n = dx, if f(x) = f(x1, … , xn−1) then, for all k such that 0 ≤ k 

≤ xn, f(x1, … , xn−1) = f(x1, … , xn−1, k) and f(x) = f(x1, … , xn, k). 
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A4 is a sort of independence condition: if adding a paper with r citations does not alter 

the index, the adding another paper with r or fewer citations produces the same effect in 

both the initial output and in the one obtained after including the paper with r citations. 

In consequence, if a certain change does not affect a smaller output then a smaller 

change never affects a larger output. 

 

 

3. Results 

 

Remark 3.1. The Hirsch index satisfies A1, A2, A21, A22, A3 and A4. 

 

A1 is an immediate implication of the definition of the Hirsch index. Notice that, for all 

n ∈ ℕ, max{h(y)}y∈Dn
 = n. Concerning A2, if n ∈ ℕ, x ∈ Dn, y ∈ Dn+1, y ≥ x and h(y) > 

h(x) = max{h(z)}z∈Dn
 then h(x) = n and h(y) ≥ n + 1, so paper n + 1 must receive at least 

n + 1 citations in y, which implies δ(x, y) > n = cx. As for A21, if n ∈ ℕ, x ∈ Dn, y ∈ 

Dn+1, y ≥ x and max{h(z)}z∈Dn+1
 = h(y) > h(x) then h(y) = n + 1 and h(x) ≤ n, so paper n + 

1 must receive at least n + 1 citations in y, which implies δ(x, y) > n ≥ cx. With respect 

to A22, if n ∈ ℕ, x ∈ Dn, y ∈ Dn+k, y ≥ x and max{h(z)}z∈Dn+k
 = h(y) > h(x) = 

max{h(z)}z∈Dn
 then h(y) = n + k and h(x) = n, so papers n + 1, … , n + k must each 

receive at least n + k citations in y. Therefore, δ(x, y) ≥ k(n + k) > kn ≥ kcx. As regards 

A3, it follows from f(x) ≠ max{h(y)}y∈Dn
 that xn < n. This makes the number xn of 

citations of the last paper irrelevant to compute h(x) and, accordingly, h(x) = h(x−n). 

With respect to A4, h(x) = h(x1, … , xn−1) means that xn ≤ h(x1, … , xn−1). Hence, adding 

to both (x1, … , xn−1) and x another paper having at most xn citations cannot increase the 

Hirsch index.  

 

Proposition 3.2. With α ∈ {1, 2}, an index f satisfies A1, A2α and A3 if, and only if, f 

is the Hirsch index. 

 

Proof. “⇐” Remark 3.1. “⇒” With α ∈ {1, 2}, let f be an index satisfying A1, A2α and 

A3. Step 1: f agrees with the Hirsch index on D0. Since the only member of D0 is x = ∅ 

and since dx = min{x1, … , xdx} = 0, by A1, f(∅) = 0 = h(∅). 

 

Step 2: f agrees with the Hirsch index on D1. Let x ∈ D1. Case 1: x1 ≥ 1. By A1, f(x) = 1. 

Case 2: x1 = 0. Case 2a: f(x) ≠ max{f(z)}z∈D1
. Since x ∈ D1, x−1 = ∅. By A3, f(x) = f(x−1) 

= 0 = h(x). Case 2b: f(x) = max{f(z)}z∈D1
. Let y = ∅. By step 1, f(y) = max{f(z)}z∈D0

 = 0. 

Case 2b1: A21 holds. Then y ∈ D0, x ∈ D1, max{f(z)}z∈D1
 = f(x), x ≥ y and δ(y, x) = 0 ≤ 

cy = 0. By A21, f(x) ≤ f(y) = 0. Since f(x) ≥ 0 by definition of index, f(x) = 0 = h(x). Case 



−6− 

2b2: A22 holds. Then y ∈ D0, x ∈ D1, f(x) = max{f(z)}z∈D1
, f(y) = max{f(z)}z∈D0

, x ≥ y 

and δ(y, x) = 0 ≤ cy = 0. By A22 when k = 1, f(x) ≤ f(y) = 0. Hence, f(x) = 0 = h(x). 

 

Step 3: for n ∈ ℕ\{0, 1}, f agrees with the Hirsch index on Dn. Choose n ∈ ℕ\{0, 1} 

and, by steps 1 and 2, suppose that, for all k ∈ {0, 1, … , n − 1}, f agrees with the 

Hirsch index on Dk. To prove that f agrees with the Hirsch index on Dn, choose x ∈ Dn. 

Let h = h(x). Case 1: h = n. This means that, for all i ∈ {1, … , n}, xi ≥ n. Hence, cx = dx 

= n and, by A1, f(x) = dx = n = h. Case 2: h < n. By the induction hypothesis, f(x−n) = 

h(x−n). As h(x) = h < n, it follows that xn ≤ h and, thus, h(x−n) = h(x). In sum, f(x−n) = h. 

 

Case 2a: f(x) ≠ max{f(z)}z∈Dn
. By A3, f(x) = f(x−n) = h = h(x). Case 2b: f(x) = 

max{f(z)}z∈Dn
. Let k ∈ {2, … , n} and y ∈ Dk satisfy, for all i ∈ {1, … , k}, yi ≥ k. By 

A1, f(y) ≥ min{min{y1, … , yk}, k} = k. The Hirsch index is such that, for all r ∈ ℕ, 

max{h(z)}z∈Dr
 = r. Given f(y) ≥ k, by the induction hypothesis, f(v) = max{f(z)}z∈Dk

 

implies f(v) = k. As a consequence, for all k ∈ {2, … , n}, 

 

max{f(z)}z∈Dk
 = k.              (1) 

 

Case 2b1: α = 1. By (1), max{f(z)}z∈Dn
 = f(x) implies f(x) > f(x−n). As a result, x−n ∈ 

Dn−1, x ∈ Dn, x ≥ x−n and max{f(z)}z∈Dn
 = f(x) > f(x−n) imply, by A21, δ(x−n, x) > cx−n

 ≥ h. 

But δ(x−n, x) = xn and, since h(x−n) = h, xn ≤ h: contradiction. 

 

Case 2b2: α = 2. Let v ∈ Dh satisfy, for all i ∈ {1, … , h}, vi = xi. By A1, f(v) = h. By 

(1), f(v) = max{f(z)}z∈Dh
. Let r = n − h. For t ∈ {1, … , r}, let x

t
 ∈ Dh+t satisfy, for all i ∈ 

{1, … , h + t}, x
t
i = xi. It follows from h(x) = h that, for all i ∈ {1, … , h + t}, xi ≤ h = cv. 

Given this, the fact that x
r
 = x implies δ(v, x) ≤ rh ≤ rcv. Summarizing, v ∈ Dh and x ∈ 

Dh+r are such that x ≥ v, f(x) = max{f(z)}z∈Dh+r
, f(v) = max{f(z)}z∈Dh

 and δ(v, x) ≤ rcx. By 

A22, f(x) ≤ f(v). Hence, f(x) ≤ f(v) = h < n, which contradicts f(x) = max{f(z)}z∈Dn
 = n.� 

 

Remark 3.3. Neither A21 nor A22 can be replaced by A2: an index f satisfying A1, A2 

and A3 need not be the Hirsch index, as Example 3.4 proves. 

 

Example 3.4. Let f be the index such that f(3, 1, 1) = 3 and, for all x ∈ D\{(3, 1, 1)}, f(x) 

= h(x). Whereas f satisfies A1, A2 and A3, it is not the Hirsch index. 

 

Proposition 3.5. An index f satisfies A1, A2 and A4 if, and only if, f is the Hirsch 

index. 
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Proof. “⇐” Remark 3.1. “⇒” Let f be an index satisfying A1, A2 and A4. Step 1: f 

agrees with the Hirsch index on D0. Since the only member of D0 is x = ∅ and since cx = 

dx = min{x1, … , xdx} = 0, by A1, f(∅) = 0 = h(∅). Step 2: f agrees with the Hirsch index 

on D1. Let x ∈ D1. By A1, min{x1, 1} ≤ f(x) ≤ 1. Thus, x1 ≥ 1 implies f(x) = 1 = h(x). If 

x1 = 0 then let y = ∅. By step 1, f(y) = max{f(z)}z∈D0
 = 0. In addition, x ≥ y and δ(y, x) = 

0 < cy = 0. By A2, f(x) ≤ f(y) = 0. By definition of index, f(x) ≥ 0. In sum, f(x) = 0 = h(x).  

 

Step 3: for n ∈ ℕ\{0, 1}, f agrees with the Hirsch index on Dn. Choose n ∈ ℕ\{0, 1} 

and, by steps 1 and 2, suppose that, for all k ∈ {0, 1, … , n − 1}, f agrees with the 

Hirsch index on Dk. To prove that f agrees with the Hirsch index on Dn, choose x ∈ Dn. 

Let h = h(x). Case 1: h = n. This means that, for all i ∈ {1, … , n}, xi ≥ n. Hence, cx = dx 

= n and, by A1, f(x) = dx = n = h. Case 2: h < n. Let v ∈ Dh satisfy, for all i ∈ {1, … , h}, 

vi = xi. By A1, f(v) = h. The Hirsch index is such that, for all r ∈ ℕ, max{h(z)}z∈Dr
 = r. 

By A1, the induction hypothesis and f(v) = h, max{f(z)}z∈Dh
 = h. Let r = n − h. For t ∈ 

{1, … , r}, let x
t
 ∈ Dh+t satisfy, for all i ∈ {1, … , h + t}, x

t
i = xi. It follows from h(x) = h 

that, for all i ∈ {h + 1, … , n}, xi ≤ h. Define w to be the member of Dh+1 such that wh+1 

= h and, for all i ∈ {1, … , h}, wi = vi. Then v ∈ Dh, w ∈ Dh+1, w ≥ v, f(v) = 

max{f(z)}z∈Dh
 and δ(w, v) = h = cv. Therefore, by A2, f(w) ≤ f(v) = h. By A1, f(w) ≥ h. 

Consequently, f(w) = h = f(v). Given this, by A4, f(v) = f(x
1
). This result, by A4, yields 

f(x
1
) = f(x

2
). By repeated application of A4, for all t ∈ {1, … , r − 1}, f(x

t
) = f(x

t+1
). 

Summing up, h = f(v) = f(x
1
) = … = f(x

r
) = f(x).� 

 

Remark 3.6. Examples 3.7, 3.8 and 3.9 prove that no axiom in Propositions 3.2 and 3.5 

is redundant. 

 

Example 3.7. Let f be the index such that, for all x ∈ D, f(x) = 1 + h(x). Then f satisfies 

A2, A21, A22, A3 and A4; does not satisfy A1; and is not the Hirsch index. 

 

Example 3.8. Let f be the index such that, for all x ∈ D, f(x) = dx. Then f satisfies A1, 

A3 and A4; satisfies neither of A2, A21 and A22; and is not the Hirsch index. 

 

Example 3.9. Let f be the index such that, for all x ∈ D, f(x) = h(x) − 1 if min{x1, … , 

xdx} < h(x) < dx and f(x) = h(x) otherwise. Then f satisfies A1, A2, A21 and A22; satisfies 

neither A3 nor A4; and is not the Hirsch index. 
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